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The Weiss variational principle in mechanics and classical field theory is a variational principle
which allows displacements of the boundary. We review the Weiss variation in mechanics and classi-
cal field theory, and present a novel geometric derivation of the Weiss variation for the gravitational
action: the Einstein-Hilbert action plus the Gibbons-Hawking-York boundary term. In particular,
we use the first and second variation of area formulas (we present a derivation accessible to physi-
cists in an appendix) to interpret and vary the Gibbons-Hawking-York boundary term. The Weiss
variation for the gravitational action is in principle known to the Relativity community, but the
variation of area approach formalizes the derivation, and facilitates the discussion of time evolution
in General Relativity. A potentially useful feature of the formalism presented in this article is that
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it avoids an explicit 3+1 decomposition in the bulk spacetime.
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I. INTRODUCTION

The Weiss variational principle is a variational principle which includes variations of the boundaries for the action
integral [1, 2]. In particular, the Weiss variation includes infinitesimal displacements of the endpoints for a mechanical
action, or displacement of the spacetime boundaries for the action of a classical field theory. In general relativity (GR),
the approach we present is based on and makes explicit that displacements of the boundary produce the contribution
of the Gibbons-Hawking-York surface integral to the field equations. In mechanics, the Weiss variation may be used
to identify a Hamiltonian without performing a Legendre transformation, and in classical field theory, one may use the
Weiss variation to identify the Hamiltonian without performing a 3+1 split in the bulk. In particular, one may use the
Weiss variation without an explicit 341 split in the bulk to extract the canonical variables and Hamiltonian for GR.
The Weiss variation also provides a quick way to obtain the Hamilton-Jacobi equation directly from boundary terms.
In this sense, the Weiss variation formalism provides a complementary addition to the existing canonical formalism
for boundary terms in GR (see [3-8] and references therein).

In the gravitational case, variational principles are complicated by the fact that the Einstein-Hilbert action contains
second-order derivatives of the metric tensor; the variation of the Einstein-Hilbert action will, as a result, contain
boundary terms proportional to the derivatives of the metric tensor variations [9]. One is then forced to hold both
the metric tensor and its derivatives fixed at the boundary. If the Gibbons-Hawking-York (GHY) boundary term is
added to the Einstein-Hilbert action [10-12], and if the components of the metric tensor (only) are held fixed at the
boundary, the variation of the GHY boundary term will cancel out boundary terms proportional to the derivatives of
the metric tensor variations (also see [13, 14]).

The Weiss variation of the gravitational action (the Einstein-Hilbert action plus the GHY boundary term) requires
the variation of the GHY boundary term under displacements of the boundary. This is the principal insight that we
bring to this problem. One may obtain the variation of the GHY term by brute force, but since the GHY boundary
term is expressed in terms of geometric quantities (it is in fact the integral of the mean curvature of the boundary
surface), it is natural to use a formalism in which the geometric meaning is apparent. Fortunately, the variation of
area formulas [15] and [16-18], which describe the variation of the volume of a hypersurface under displacements,
provide such a formalism. Upon comparison with the first variation of area formula, one may interpret the GHY
boundary term as the first-order variation of “area” (the 3-volume) for the boundary under a unit displacement of
the boundary surface in the direction of the unit normal vector-the GHY boundary term is a special case of the first
variation of area formula. The second variation of area formula [16-18] describes a variation in the first variation of
area formula under a displacement (which may be independent of the first displacement) of the hypersurface. With
it we obtain an expression for the variation of the GHY boundary term.

The Weiss variation for the gravitational action is not a new result. Once we present the Weiss variation for a
mechanical system, a reader familiar with the ADM canonical formulation of GR [14, 19, 20] should be able to infer
the Weiss variation for the gravitational action without much difficulty. Some terms in the Weiss variation can be
inferred from results in the existing literature [3-5, 8] which examine metric variations of the GHY boundary term.
The variation of gravitational action that results from boundary displacements is also well-known in the form of
the Einstein-Hamilton-Jacobi equation [21, 22] (see also [23] and references therein).? What is new is our geometric
derivation of the Weiss variation for the gravitational action and variations due to explicit boundary displacements,
which do not to our knowledge appear in the existing literature. Furthermore, our formalism avoids an explicit 341
decomposition of the bulk spacetime. It should be stressed that we claim no lack of generality in ignoring explicit
boundary displacements; infinitesimal boundary displacements can in principle be absorbed into metric variations (in
both the bulk and boundary metric). While our formalism may be useful for describing situations where a global
3+1 decomposition is inappropriate (for instance, spacetime manifolds which fail to be globally hyperbolic), we again
do not suggest a lack of generality in employing a 3+1 decomposition for boundary variations, as the use of such
a formalism for boundary variation only requires the existence of such a decomposition in a neighborhood of the
boundary.

Below, we review the Weiss variational principle in mechanics and in classical field theory. Next, we briefly review
some definitions and results in semi-Riemannian geometry, and present the variation of area formulas. We review the
standard variation for the gravitational action (for spacetimes with and without spatial boundary) and extend it to
include contributions from displacements of the action. Finally, we rewrite the variation of the resulting action in
Weiss form.

We assume a 4-dimensional spacetime manifold M, with U C M and W C M being subsets of a spacetime
manifold M of nonzero volume. We use W and U to distinguish between spacetime regions with and without spatial
boundary; W has spatial boundary, and U does not. We use the MTW [9] signature (—, +, +, +) for the metric tensor

1 We discuss in Sec. IT A the relationship between Hamilton-Jacobi theory and the Weiss variation.



Guv, « will represent a points on the spacetime manifold M, and y will represent points on hypersurfaces (surfaces
of codimension one) in M, U or W . Greek indices refer to coordinates on the spacetime manifold M, U and W;
coordinates on M will be denoted x* with 2 = ¢ being the time coordinate. Lowercase Latin indices refer either to
mechanical degrees of freedom or coordinates on hypersurfaces—the distinction should be apparent from the context.
Capital Latin indices from the beginning of the alphabet will either refer to two-dimensional surfaces in M, or to the
components of a generic classical field-again, the distinction should be apparent from the context. Thus, coordinates
on hypersurfaces will be denoted 3°, and coordinates on two-dimensional surfaces will be denoted z4.

II. THE WEISS VARIATIONAL PRINCIPLE
A. Mechanics

We begin by reviewing the Weiss variational principle in mechanics, as discussed in [1], [2] and [24]. Mechanical
systems are typically described by an action functional of the form:

Slq] := / : L(q,q,t)dt (2.1)

ty

where the quantities ¢* form the degrees of freedom for the mechanical system in question. The functions ¢* = ¢*(t)
describe paths in the manifold formed from ¢ and t. The primary feature of the Weiss variation is that endpoint
variations are allowed—even displacements of the endpoints themselves. Here, we consider two paths described by the
functions ¢*(t) and ¢'*(t), which differ infinitesimally in the following manner:

q"(t) = q'(t) + en' (1) (2.2)

where € < 1 is an infinitesimal parameter and 7*(t) is some function, which is not assumed to vanish at the endpoints.
The difference in the endpoints may be characterized by differences in the value of the time parameter for the
endpoints,

t'h =t +
11 1+em (2.3)
to =12+ €1
The action for the path ¢’ Z(t) which has endpoints t'; and t'5 takes the following form, to first order in e:
t/2 to+e€ T2
Sl = [ Ll ©.400d= [ L)+ en). (o) + enfe).0ds
tll t1+em
2 /9L oL ., 2 :
= [ (G o+ i) ars [ nateaw. o
t dq 94 t 94
taote T2 t1+eT ( ’ )
+ [ sawad. - [T L), 0
to t1

2}

2/0L d [(OL ; oL
—S’[q]—i-e/t1 ((?qi_E<8q'i>)n(t)dt+(8_tji6n(t)+LAt>

where At = At(t) is a function that satisfies At(t1) = e 71 and At(t2) = € 72, and S[q] is the action for the path
q*(t) with the endpoints ¢; and t2. It is convenient to rewrite the boundary /endpoint term in terms of the total
displacement of the endpoints Agj and Agj:

(t'1)
(t'2)

The variation in the action, to first order in €, becomes:

t1

Ag}
Ad}

q'(t) = e(n'(t1) + 11 ¢'(t1)) + O(e?)

=d () -d | | (2.5
i=q"(t'2) — ¢'(t2) = e(n' (t2) + 72 4 (t2)) + O(€%)

to

2 /9L d (0L i i i
6526‘/161 (3qi — = (841'))77 (t) dt + (pi Aq* — (pi " — L) At) (2.6)

t1




where Aq' = Aqi(t) satisfies Aqgi(t1) = Aqi and Ag(t2) = Ags, and we have defined the following:

oL
Pii=5a (2.7)
Note that the quantity appearing in front of At in (2.6) is in fact the Hamiltonian:
H:=p; " —L (2.8)

The Weiss variational principle states that the physical paths ¢‘(¢) are those which have the property that general
infinitesimal variations about ¢‘(t) produce only boundary/endpoint contributions to lowest order in the variation
parameters. Simply put, physical paths q'(¢) are those for which the first order variations about ¢*(t) yield variations
in the action of the form:

to

55 = (pi Aq" — H At) (2.9)

ty

Upon comparing (2.9) with (2.6), (2.9) implies that physical paths ¢(t) are those for which the following term vanishes:

2 79L d (0L ;

If we demand that the above equation is satisfied for general infinitesimal variations d¢*(t) = en’(t), we recover the
Euler-Lagrange equations:
oL d (0L
- — — - | =0. 2.11
dq' dt (341) @10)

We note that the Weiss variation (2.6) allows one to identify the Hamiltonian without having to perform a Legendre
transformation (cf. (2.8)). It may be argued that in doing so, one is essentially identifying Noether currents, but here,
no reference is made to symmetries and no transformation of the time parameter ¢t has been performed; instead, one
displaces the endpoints.?

The Weiss variation also provides a quick way to obtain the Hamilton-Jacobi equation without the machinery of
canonical transformations. The classical action S, is defined as the value of the action evaluated on solutions to the
Euler-Lagrange equations. If we know the solutions to the Euler-Lagrange equations for a given set of endpoint values
¢ = q(t1), ¢& = ¢*(t2), the classical action may be written as a function of the endpoint values and endpoint times:
Se = Sc(t1,qi5t2,¢5). We may hold t; fixed, and upon comparing the resulting differential of the classical action
dS. = (0S./0q}) dq: + (0S./0¢5) dqi + (0S./0ts) dt with (2.9), we recover the formula relating p; to the derivatives
of the action and the Hamilton-Jacobi equation:

0S.

8—(ﬁ = pilt, (2.12)
0S.
5 ~Pilt (2.13)
0S. 0S.
=—-H|—,¢,t 2.14
Ota (5(1%7(]2’ 2) @14

We do not include the derivative 9S./dt1, since t1 is held fixed. We stress that ¢} is not held fixed, so that we may
construct (2.12); equation (2.12) is important because it ultimately allows us to obtain physical paths ¢*(t) from
solutions S, = Sc(q},qb, t1,t2) to the Hamilton-Jacobi equation (2.14). Given S, = S.(q}, b, t1,12), equation (2.12)
allows us to write down an algebraic® equation relating ¢4 and ¢ to the initial values ¢i and p;|s, ; note that equation
(2.13) is insufficient* for this, since it depends on the final momentum p;|¢,, rather than the initial momentum p;|;, .
If the solutions of the Hamilton-Jacobi equation (2.14) are known for all values of ¢}, then we simply solve (2.12) for
q% to obtain the function g¢i(ts) for a given set of initial values ¢i and p;|y, .

2 If the action is invariant under time translations and the displacement of the endpoints is chosen so they are consistent with a translation
in time, then one recovers the result that the Hamiltonian is the Noether current for time translation symmetry.

3 Note that for some function S. = Se (qi,qé,tz)7 the left-hand side of formula (2.12) is an explicit function of ¢, t2 and g¢t.

4 Equation (2.13) is used to construct the Hamilton-Jacobi equation (2.14) itself; in particular, it is used to replace the momentum
argument in the Hamiltonian with the derivative 856/8qé of the action.



B. Classical field theory

Now consider the Weiss variation for a classical field theory in a region W with spatial boundary, W C M. Given
a collection of fields ¢*(x), the index A being the field index (it may either serve as a coordinate index, a spinor
index, an index to distinguish fields, or a combination), we begin by considering the following action functional:

St = | 2,000 o) dto (2.15)

where . is called the Lagrangian density, which is a function .Z(X4, Y#A, o) of XA = pA(z), their first derivatives

Y#A = (?#gpA, and 2# € R*. For clarity, we have chosen not to suppress the field and the Greek spacetime/R* indices
in the arguments of .£.%

We may identify one of the variables in R*, which we will call 2° = ¢, as a time variable, and the remaining variables
y® are interpreted as spatial variables. The volume element d*z (we absorb any factors of \/m into the Lagrangian
density) may be split into spatial and temporal parts, so that d*z = dt d®y. From the Lagrangian density, one may
obtain the field Lagrangian by isolating the spatial part of the integral, so that:

L[@Au SDAv Et] = $(¢A7 6MS0A7 xﬂ) d3y (216)
PP

where ¥; is a hypersurface of constant ¢, and the semicolon in L[p?, $?; ;] denotes that it is a functional of functions
defined on ¥, in particular the functions ¢ |s, (y) and ¢4|s, (y).

To obtain the variation of the action, we add an infinitesimal function d¢* () to ¢ (z). To obtain a general varia-
tion, we infinitesimally distort the region W the infinitesimally distorted region will be denoted W’. The boundary
OW of the region W may be defined parametrically by x#(y), where 3 are coordinates on the boundary surface
OW. If OW’ is the boundary of the region W', then we may describe the displaced boundary OW’ parametrically by
x#(y) + dx*(y), where dx* is an infinitesimal displacement of the boundary.

The varied action takes the form:

Slp? + ] = » L + 0™, 0,0 + 591, 2) d'x (2.17)

We may obtain an expression for the above valid to first order in d¢“(x) and the boundary displacements dz* by
performing a Taylor expansion of the Lagrangian density about ¢*:

0L ., 0%

L% + 60", 0. + 50%),a#) = L (0%, 0™ at) + 702 9"t 30,07 800" (2.18)
"
where the following quantities are defined:
0 0L (XA YA k)
a(pA . aXA XAZWA(I),YHA:(?MS@A(CE) (2 19)
0L 8$(XA,YMA,I“) '
6((9”50‘4) ' 8Y#A XA=pA(z), Y“A:a“@A(x)

We establish the convention that if .Z appears without any arguments, it means that .# has the following arguments:
&L = L(pA, 0,0, 2"). The first order expansion of the action is:

0L 0L _

S[p? + 5p?] = S[pA +/ (—5¢A+76 &pA) d*z + ZL(p?,0,0%) 6zt d®%

2 ] = S[e”] o L DB O o (v”, 0up™) n
0L 0L

0L 0L -

= A A A 4 A A w73
Slp ]+/ (8@*‘ 5 +8(8MA) Dubyp )d:c—i—/a ($+—8¢A oo +7a(8yw) duoyp )5x s,
(2.20)

5 Also, since we shall later include the metric as an argument in the action functional, we choose not to suppress indices to avoid confusing
the metric with its determinant—the symbol g is reserved for the determinant of the metric.



FIG. 1. This figure illustrates the deformation of the region W and the infinitesimal displacement of the boundary OW to
OW’ by the displacement vector dz*.

where d3iu is the directed surface element on 9W. The directed surface element has the explicit expression:

1 Ox® dxP oz

— 7 27 27 At J k
31 Enapy 95" D7 O dy* Ndy’ N dy (2.21)

S, =
where €,,,3., is the Levi-Civita symbol. The boundary integrals in (2.20) may be justified by noting that under an
infinitesimal displacement §z* of the boundary OW, the boundary 9W sweeps out a volume JV = dz# d*S, (see
figure (1)).

The expansion of the action (2.20) may be further simplified by noting that terms containing 64 éx# and 9, 6@ 6+
are second order in infinitesimal variations. If all variations are proportional to a single infinitesimal parameter, these
terms may be ignored if we only seek the variation of the action to first order in the variations. The first-order
variation of the action is then:

0L 0L =
88 = S[p? + dp?] — S[p?] = / <— S+ ———0 W‘) d*z + &Lzt A% 2.22
w \9p? 9(0up?) g oW g ( )
The action must be reworked so that the integral over W has an integrand proportional to do*, so that a functional
derivative may be defined. We do this by performing a generalized “integration by parts”; the term containing (’“)H&pA
may be converted to a term proportional to §¢? and a divergence term by way of the Leibniz rule:

0L 0Z 0Z
8<75A)—785A+8 (7>5A 2.23
80,0 ) = 0w,em 0 0\, ) 22
The divergence theorem in W C R* takes the following form:
/ 0 W d*z = WHd*S,,. (2.24)
w oW

which may be used to rewrite (2.22):

0.5 0. 0.5 _
55:/ (__a (7))5 Ad4:v+/ (,%xu—& A>d32 2.25
w\apA P\ 80,07 ) ) % oW 20,07 °7 " (2.25)

If we require that dz#|sw = 0 and §p?|sw = 0, the boundary terms in (2.25) vanish, and the variation of the
action 85 is an integral over W with an integrand proportional d¢*. The functional derivative of the action functional
S[p?] is defined by the following formula:

0S . 4 4
55 = /W oh oo™ (z) d*z (2.26)
The functional derivative may be identified as:
08 0L 0L
—==— -0, | == 2.2
7or = e~ (.m) 220



If we require that the functional derivative vanishes, we obtain the Euler-Lagrange field equations:

0L 0L
7o =0 (.0 .

We now write (2.22) in the local Weiss form—we obtain the field theory generalization of the Weiss variation for
mechanics (2.6). To do this, we define the total change in the field values at the boundary:

Ap? = (o + 5™ ow — 0% ow

2.29
= (0™ + 0™ 62#) |ow (2.29)
The variation of the action (2.22) in the local Weiss form becomes:
0% 0L -
55::/ (——a (7»5 Ad4x+/ Pl Ap? — %, 627) d°S 2.30
W oA . 3(3u<PA) 4 OW ( A5Y ) . ( )

where we have identified the canonical energy-momentum “tensor” s, dx¥ (this is sometimes called the Hamiltonian
Complex or Hamiltonian tensor [25, 26]):°

A, = P o,pt — 5t & (2.31)
and the following quantity, which we call the polymomentum:
0¥
Phi=——— 2.32
0,7 (232

This result demonstrates that the canonical energy-momentum “tensor” plays a role analogous to the Hamiltonian in
mechanics; it may in fact be used to define a Hamiltonian for the field. The Hamiltonian density may be defined as
the s#°y component of the Hamiltonian tensor, which takes the explicit form:

H = H =Tmppt - L (2.33)

where z° = t, the overdot denotes the time derivatives 4 := dyp? and the conjugate field momentum 74 is defined
as:
0L
ma = PY = 2R (2.34)
We assume that one may invert the above to obtain an expression for the function ¢4 = ¢4 (74,04, 0;0%), and
the lowercase index i (which appears in the partial derivatives 9;) corresponds to the coordinates y® for surfaces of
constant ¢.

The Hamiltonian density has a form similar to that of the Hamiltonian in mechanics, and using ¢ = 4 (74, 2, 9;04),
can itself be written as a function of 74, ¢ and 9;0*. The Hamiltonian density % is not strictly a Hamiltonian,
since it is defined at a single point in space, and does not include the degrees of freedom present at other points
in space. The Hamiltonian for a field theory is the “sum” of the Hamiltonian densities over all points in space; to
construct the Hamiltonian, we integrate the Hamiltonian density .5Z° over a hypersurface ¥; of constant ¢:

Hlph mas 5] = | (a0, 007y 1) d?’y:/ (mag? - £)d% (2.35)
P P
which may be rewritten as the Legendre transformation of the field Lagrangian:
Hp", ma; 5] = / ma ¢t &Py — Llp?, ¢4 5] (2.36)
P

As in the case of the field Lagrangian (2.15), the Hamiltonian H[p“, 74; %] is a functional of functions defined on
¥, in particular the functions ¢?|s, (y) and mals, (v).

6 If we work in Minkowski spacetime and choose dz* so that it corresponds to a translation in spacetime, then we recover the well-known
result that 7+, dx" is the Noether current for spacetime translation symmetry.



We may now obtain the Weiss form of the variation. To do this, we choose the boundary to consist of two surfaces
of constant ¢, ¥, (for ¢t = ¢1) and X, (for ¢ = t3), and a surface at spatial infinity, which we call the spatial boundary.
We require vacuum boundary conditions J#*, = 0 at the spatial boundary, and set dz* = §/ At. The variation of
the field action in Weiss form is then:

0% 0%
58 = =0 | s | ) O™ d +(/ P ApA) ddy — Hlp™ ma: S At)
/W (&pA ”(3(3#<p14))> 14 T Zt( A 90) Y [0, Ta; 24

We have shown how the Weiss variation may be carried out in a generic classical field theory. In the next several
sections, we lay the groundwork and carry out the Weiss variation for the action of GR (the gravitational action). The
GHY boundary term in the gravitational action will introduce additional technical elements to the Weiss variation,
so the results in this current section cannot be directly applied to the gravitational action. On the other hand, some
of the features of the Weiss variation described in this section will be useful for understanding features of the Weiss
variation for the gravitational action.

ta

(2.37)

t1

III. GEOMETRY, HYPERSURFACES, AND VARIATION OF AREA FORMULAS
A. Geometry

We begin by presenting our definitions for the Riemann curvature tensor, Ricci tensor, and Ricci scalar:

Rfyap i= 0T, — 95T, + T4, T, —T% T7,. (3.1)
Ry =R 00 (3.2)
R:=g¢" R, (3.3)

which are defined for a Lorentzian manifold M endowed with a metric tensor g,,,,, and a metric-compatible connection
V. with connection coefficients (Christoffel symbols) T}, :

« 1 o
F#y = 59 (Ougov + OvGuo — OoGuw)- (3.4)

B. Foliations and hypersurfaces

It is necessary to discuss the formalism used to describe the geometry of hypersurfaces embedded in 4d bulk spaces,
since we take an approach that is slightly different than that present in much of the literature. That literature makes
use of the abstract index notation [13, 27], or coordinate bases on hypersurfaces [14, 25] ([20] is an exception, as
some key results are worked out in the coordinate basis). In our approach, we obtain many of our results in the
bulk coordinates, which still requires that we assume the existence of a foliation. We will indicate which results are
foliation dependent, and which are not.

Place a foliation on M, with non-null hypersurfaces g distinguished by values of some real parameter S. More
precisely, the foliation may be defined by an appropriate foliation function ¢(x), with a hypersurface ¥ g being a level
surface defined by the constraint: ¢(z) = S. We define a normal vector field:

nf(x) == g"" Vyo(x) (3.5)

From the above, we may define a unit normal vector field n#(x) for the foliation:
nt =ean® (3.6)
where € = 41 if the unit normal vector is spacelike, and € = —1 if the unit normal vector is timelike. The quantity &

ensures that the unit normal vector n* points in the direction of increasing ¢.” The quantity a = a(x) is the “lapse
function”, defined as:®

1

7 Note that if n# is timelike, it points in the direction of decreasing ¢.
8 This is equivalent to the lapse function in the ADM formalism.



The unit normal vector field n*(x) allows us to construct the induced metric/projection tensor:
Yuv = Guv — E NNy (38)

It is not difficult to show that if coordinates y* are placed on the hypersurface g, Y may be expressed in basis of
the tangent vectors /0y’ to the hypersurface ¥g. To do this, we define the components E!* of the tangent vectors in
the following way:

0 Ozt
El = o9 (3.9)

O . 0
oyt Tt Oz

We then write the induced metric 7,, in terms of the basis vectors:
Yij = E}' EY v = B} EY g, (3.10)

We use the above to define the metric-compatible, torsion-free covariant derivative D; for the hypersurface g in
the usual manner, with connection coeflicients f‘ék being the Christoffel symbols corresponding to v;;. In the bulk
coordinate basis, the metric-compatible, torsion-free covariant derivative for a tensor T#1+#r, ,, with indices tangent
to the hypersurface ¥ g may be written as:

DTy, Ly = (Yt ar) (W02 78 VoI, g, (3.11)

With some work, one may show that the above definition is equivalent to the connection D; with the definition
Iy, = EJE, V,E} for the connection coefficients. The covariant derivative may be used to construct the intrinsic

Riemann curvature tensor R® suv Of the hypersurface Xg from the commutator of the derivative D,, defined above:

[D,, D] X* = R%g,, X (3.12)
for a vector X* tangent to the hypersurface X 5. It should be straightforward to infer that R® s = Ea Eg EL EJR%,, >
where R® bij 18 given by the following expression:

Rabij == 8af?b - (%ffb + f;-ls 7;17 - F?S ffb (313)

It is natural at this point to ask how the hypersurface curvature tensor RO‘IB v 18 related to the curvature tensor
R%g,, in the bulk manifold M. The derivation below (and those of Appendix A) is well known, but we carry it
through explicitly to emphasize the importance of the sign, . Before we can discuss this relationship, we must first
introduce another notion of curvature, the extrinsic curvature.

The extrinsic curvature tensor K, of a hypersurface ¥ g may be defined by the following expression:

K X'YY = —n, XFV,Y" (3.14)

for two vectors X* and Y'* tangent to Xg: X*n, =0 and Y*n, = 0. This definition is independent of the foliation,
and depends only on the manner in which the surface X g is embedded in the bulk manifold M and does not depend
on any other surface in the foliation. On the other hand, if a foliation exists, the extrinsic curvature tensor may be
written in three different ways:

1 g _ T
§£n7uv = 'Y,u")/#vcrnT = v,unu —EN, Ay (315)

K, =
where £, is the Lie derivative, which acts on 7,, in the following way:
LY =100V + Yar0un® + Y20 0un® = n*Vavuw + Yar Vut® + Yua Von® (3.16)

The last equality in (3.15) makes use of the acceleration a, for the integral curves of the unit normal vector field,
which may be written as:

a, =n*V,n, =—eD,(Ina) (3.17)

where the last equality in the above comes from the torsion-free property of the covariant derivative V.
The trace of the extrinsic curvature tensor, the mean curvature, is given by the following expression:

K :=9" K,, = ¢"" K., = Von® (3.18)
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where the second equality comes from the fact that K,,n” = 0, and the last equality comes from the properties
(07

Y vy =* and n”Van, = 0.

There are three formulas which relate the bulk Riemann curvature tensor R*,,g for M to the extrinsic curvature
K, of a hypersurface ¥, and the Riemann tensor R”WB for the surface ¥. The derivation of these formulas is
provided in Appendix A.? The first is the Gauss equation:

VeV R rap = B o + (KL Ko — Kf Kuo) (3.19)
the second is the Codazzi equation:
Vevavs Bepw n® = DaKg" — DgKqo" (3.20)
and the third equation is the Ricci equation:

EnKuw = —Rapsw nn® + K, oK,* —caua, + Dyay

3.21
= —Rausv nn? + K oK,* — £ D.D,« ( )
«

Note that the right hand side of (3.21) is tangent to the hypersurface; if we contract any index with the unit normal
vector, the right hand side vanishes. While the Gauss and Codazzi equations do not explicitly refer to the foliation,
the Ricci equation depends explicitly on the foliation through the lapse function «, and via the Lie derivative of the
extrinsic curvature. Finally, we present the contracted forms of the Gauss and Codazzi equations:

R—2en*n” Ry, = R+e(K" K, — K?) (3.22)

V5 Ry 0 = Do (K3* — 7§ K) (3.23)

which are typically used to obtain the 3+1 split of the Einstein field equations.

C. The variation of area formulas

We now introduce the variation of area formulas, which describe the change in the volume (or “area”) of a hyper-
surface under infinitesimal displacements. Define the volume A for some region Q of a hypersurface ¥g (Q C Xg) to
be the following;:

A= /de (3.24)

where d¥ is the hypersurface volume element, which may be written as (B5):

d¥ = e /|| d®y (3.25)

with  := det(7i;). Now consider an infinitesimal displacement of the surface Q. If the surface Q is parameterized by
the functions z#(y) (y* being coordinates on Q), then we may characterize the displacement of the surface by adding
dz*(y), so that the parameterization of the displaced surface may be described by the functions:

2 (y) = a*(y) + ot (y). (3.26)
It is helpful to decompose the displacement dz*(y) in the following manner:

ox* = da n* + 60"
da = ed0x“ng (3.27)
Ob* = Ak dx~

9 Again, these derivations are well-known. We carry it through explicitly to emphasize the importance of the sign, .
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Under the displacement dz# of the boundary surface, the first variation of area formula may be written as [15] (see
Appendix B for the derivation):

SA = / SaKdv+ [ 6bdo; (3.28)
Q 0Q
where do; is the directed surface element on 9Q. Explicitly, we may write:

5A:/ 5x“n#K\/|’y|d3y+/ 51:”7{,‘(
Q 9Q

7

3;) ri er \/det|oap|d®z (3.29)

where 045 is the induced metric on 9Q with respect to coordinates 2, and 7; is the unit normal to dQ tangent to
Q, with e, = rir; = 1.

To obtain the second variation of area formula, we introduce a displacement §z* which is in general independent
of the displacement da*. We decompose §Z* in a manner similar to the decomposition in (3.27):

SFM = dan' + 6b*
da = £03%nq (3.30)
O = 4P 57

The second variation of area is the change in 6A with respect to the displacement 6z* (see Appendix B for the
derivation):

05 (0, 4A) = /Q (6a dae(1/2) (R+e(K? — K,y K") — R) + D; (00" D;ob" + da b’ K) + 6a Db’ K) s (3.31)

where §, denotes a variation with respect to the displacement dx*, and J; denotes a variation with respect to the
displacement 0z*. If we choose §Z* = dx*, the the second variation of area formula reduces to:

§2A = / ((5a)2 £(1/2) (R+e(K? — K K*) — R) + D;j (b D;isb" + 6a 6V K) + da D;6b’ K) dy (3.32)
Q

Note that both of these formulas for the second variation of area depend only on the properties of a hypersurface and
the way it is embedded in the bulk manifold; they are foliation-independent.

The usefulness of the variation of area formulas will become apparent when we perform the variation of the Gravi-
tational action. In particular, the GHY boundary term is a special case of the first variation of area (3.29) (for da = ¢
and db* = 0) so that the variation of the GHY term may be written in terms of the second variation of area (3.31).

IV. VARIATION OF THE GRAVITATIONAL ACTION: SPACETIMES WTH NO SPATIAL
BOUNDARY

As stated in the introduction, the reader familiar with the ADM canonical formalism [14, 19, 20] should be able
to infer the Weiss variation of the gravitational action. In this section, we explicitly derive the Weiss variation of
the gravitational action in a geometric manner by making use of the first and second variation of area formulas. To
simplify the derivation, we first consider the case of spacetimes without spatial boundary.

A. The gravitational action

To simplify the derivation, we consider a globally hyperbolic spacetime M that is spatially compact. By this, we
mean that M has the topology R x 3, where ¥ is a three dimensional manifold without boundary. Let U C M be a
region of spacetime with the boundary U = ¥ U X consisting of the smooth, boundaryless spacelike surfaces .y
and Y, with ¥ being a surface at early time and X being a surface at late time. The gravitational action on U is
given by:

Scrlg""] == Senlg"’] + Seny (4.1)
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where Sgp[g"”] is the Einstein-Hilbert action:

Senl™) = 5 [ RVl (4.2)

and Sggy is the GHY Boundary term:

1
Somy = /6 K e VIl dy. (4.3)
18]

At this point, we may recognize the GHY boundary term Sgpy as a variation of area for the choice da = 1 and
§b" = 0 (cf. equation (3.27)). This allows one to write the variation of Sggy under boundary displacements in terms
of the second variation of area formula. This is the key observation that allows us to obtain the variation of Sgry
under boundary displacements in a geometric manner.

B. Variation of the Einstein-Hilbert action

We now review the variation of the Einstein-Hilbert action. To obtain the variation of Sgg[g"”], we begin by adding
an infinitesimal, symmetric, rank-2 tensor dg*” to the inverse metric g"”. It is convenient to define the following;:

G = g + SgM

Guv = Guv + 0gpu (44)
where dg,,,, is defined by the following condition:
9" Gov = (9" +09"7)(gov + 0gor) = 6} (4.5)
= Gov 697 + g7 690r + 69" 6gor = 0
To first order in dg"” and dg,,, we obtain the following result:
Gov 69" + 9" 0go =0 = 0gu = —gou grv 097" (4.6)

Given the above expressions, we can obtain the Taylor expansion of the volume element +/|g| to first order in g,

3gyu + O((0g,)*) (4.7)

(\/mﬂg“”*‘syw = (\/E) |9 + (83\5;?)

uv

Using the Jacobi formula for the derivative of the determinant, we obtain the following:

% _ ggpa P90 Ov 9l _ sgn(g) D9 _ lol9™ Ogas NI (4.8)
Os 0s 09w 2/19] 0w 2/14] 09 2
where sgn(g) = g/|g| picks'® out the sign of g; sgn(g) = —1 for a 4 dimensional Lorentzian spacetime. To simplify

our expressions, we provide the following definition and expressions for a quantity which we call the variation of the

volume element as:
V19l
5v/|gl = (8—
Guv

Where (4.6) has been used in the last equality. To first order, (4.7) becomes:

1 1 ,
09w = 5V lgl 9" 0G0 = 3V 9] Gy 09" (4.9)

9uv

(VDo 5500 = VI L = 5 VI9T 9 59 + O((59,0)°) (1.10)

10 Alternately, we may rewrite this as |g| = gsgn(g).
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We now write the varied Einstein-Hilbert action Sgp[g””] to first order in the variations of the inverse metric jg**
and boundary displacements dx*:

v v 1
Seala™ + 69" = 5= | (RVBlgu s, a'

1 1 _
2 /. (Rx/|g|—|—6R\/|g|+R5\/|g|+0((5g“”)2)) d'v+5- | Réxrds, (4.11)

K Jou

1 1 _
= Seulg™) + 5 [ (5B VIgl+ RoVIgl+ 069" ) d'o+ 5 [ Rost s,
U

Kk Jou

where the covariant directed surface element dBEM is given by the following expression:

%, =en, /|y Py (4.12)

where n* is the unit normal vector to the boundary 80U, € = n* n, = £1, y’ are coordinates on OU, and 7 is the
determinant of the induced metric 7;; of the boundary OU. Note that the variation of the connection coefficients,
oI, being defined as a difference between two different connection coefficients (one constructed using the metric g,
and the other constructed from the metric §,, ), transforms as a tensor. One may use this to show that the first order

variation of the Ricci scalar is:
OR = §" Ru — 9" Ry
= V(9?01 — g™"6T5,) + Ry 69" (4.13)
= Vu((g°7 8 — g 67) 0T 5) + Ry 09"
where §*7 is the inverse of the metric §op = gap + 0gas, and Rag is the Ricci tensor calculated from §ogs.

The variation of the action, to first order in the variations of the inverse metric dg¥, is given by the following
expression:

S := Spulg"” + 69" — SEu(g""]

1 1 1 _ 4.14
= — | (Vul(g*® 6 = g°* 6]) 6T%,) + Ruw 69" — = R g 69" )\/Igl d*z + —/ R ozt d°%, (1
Upon applying the covariant divergence theorem, (4.14) becomes:
1 1 =
6Spm = —/ G 09" V/|g] d*x + —/ ((g°F o — g™ 65) oT%,, + R o2*) d°S, (4.15)
2K U 2K au

where G, := R, — % R g, is the Einstein tensor.

We now attach a geometric meaning to the boundary term; in doing so, we motivate the use of the GHY boundary
term in the gravitational action. First, we place foliations near the boundary surfaces ¥y and X (the early time and
late time spacelike boundary surfaces) such that the boundary surfaces are contained in the foliation. This allows
us to define a unit normal vector field n#(x) near the boundary surface, so that the covariant derivatives of the unit
normal vector field n* are well-defined. We may choose a coordinate system adapted to the foliation, so that the
foliation surfaces correspond to the value of a coordinate r. In the ADM formalism, the unit normal vector and its
dual may be written in terms of a lapse function o = [¢°°|~'/2 and a shift vector 3 = —¢ a? g%

(1) = (1/a, [~ /a]) = (1/a, ~B" /o, ~ 3 /a,~6° /o) (w16)
[nu] = (€ ,0,0,0) '
Though the respective lapse and shift, o and 3%, form parts of the bulk inverse metric tensor g"¥, they are not physical
degrees of freedom-specifying o and /3% is equivalent to specifying the coordinate system on the spacetime manifold.
We may take advantage of this, and impose a coordinate/gauge condition in the neighborhood of the boundary
surfaces ¥; and X so that a and 3¢ are unchanged under the variation. Furthermore, we may impose the gauge
conditions J,n* = 0 and d,a = 0, and require that the variations preserve these conditions. From equation (4.16),
the requirement that these coordinate conditions be enforced when the variation is carried out may be summarized
by following statements:

ont =0

4.17
on, =0 (4.17)
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which is equivalent to requiring that o = 0 and §3° = 0.
We turn to the mean curvature, which may be written in the following manner:

K=vV,n"=0,n"+1,n° (4.18)
= go"@ Vang = gO‘B Oang — gO‘B I‘;Bn,j '

Under the coordinate conditions (4.17), the normal vector and its partial derivatives are unchanged under the variation,
so that the variation of the mean curvature takes the form:

5K = 6T, n°

4.19
= 39" T gn, — g°% 6T m, (4.19)

We stress that the above formula is only valid if the condition (4.17) is satisfied, which is equivalent to requirement
that the coordinate/gauge condition J,n* = 0 and 9, = 0 is preserved by the variation. Note that if J,a = 0, then
a, = —e D,(lna) =0 (recall (3.17)), the extrinsic curvature tensor, K,g takes the form (equation (3.15)):

Kap =Vang =T\ zn, (4.20)

With these conditions in mind, we now examine the boundary terms in the variation of the action (4.15), which
takes the form:

1
SoSpr = 5 [ (0™ 0 — g 07) 0%+ Rou¥) e my /]
o (4.21)
=5 (9°" n, 6T, — n® 6T, + R ox" ny) \/[y] d’y
k Jou

where we have made use of equation (4.12) for d?’i}#, and use the notation d55 to pick out boundary terms in the
variation §.5. The boundary terms (4.21) can be rewritten:

0oSEH = £ (—6go‘ﬁ Loy — 20K + Rox" nu) vVl >y
2K ou
== | (6g°° Kap — 20K + Rox" n,) /7] d*y (4.22)
2K oU
== | (64°F Kup — 20K + Roa" n,) Vo] &y
2K oU
where the last equality comes from the definition of the projection tensor v := ¢*# — e n® nf and the fact that

under the gauge condition, the unit normal vectors n* are held fixed at the boundaries.
If the boundaries are held fixed (if we set dz* = 0) and if all the components of the metric tensor are held fixed at
the boundary so that dg"¥|su = 0, the boundary terms reduce to:

doSEH = —% /aU SK /|| d’y (4.23)

This shows that if the metric is held fixed at the boundary, and the boundary itself is also held fixed (no boundary
displacements), the variation of the GHY boundary term §Sg gy cancels out the remaining boundary term in dpSgy-.

C. Variation of the GHY boundary term: No boundary displacements

One might infer from equation (4.23) the following expression for the variation of the GHY boundary term:

g
6Sany = E/a SK /]| d*y (4.24)
18]

under the condition that the induced metric vy, and its inverse v*¥ are held fixed (67, = 0 and §v*¥ = 0). However,
the above expression for §S¢ gy will not suffice for the Weiss variation, since the Weiss variation will include variations
in v, so that §v,, # 0 and 6y*” # 0.
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In this section, we derive the variation of the GHY boundary term for the case where the induced metric (of the
boundary dU) v;; and its inverse 7% is allowed to vary. We ignore boundary displacements (the boundary U is
held fixed with respect to the coordinates on the spacetime manifold M), and compute the variation 6Sggy due to
changes in the induced metric v,, on Uj; the resulting variation will be denoted by d45cry. The variation d,SqHy
takes the form:

8yScHy = % /w (K’ VIV - K \/m) d®y (4.25)

To first order, we may make use of (4.8) to write the volume element /|7/| in terms of the induced metric 7;; (which
depends on the bulk metric g, ) and its variation dv;;:

1 by
VI = VAT~ SRl 7 (426)
Next, we expand K’ in the following manner:
K'= K+ 46K (4.27)

where 0K is given by (4.19) (again, we impose the gauge condition: 9,n” = 0 and 9, = 0). To first order, the
variation d,S5¢Hy takes the form:

E ..
dgSany = o [ (20K — K 7; 097) /7| d’y
v Jou (4.28)
g
=5 | (20K = Ky 67") d*y
Kk Jou

where the last equality comes from making use of the fact that the induced metric «;; and projection tensor v,, =
9uv — € My Ny, are related by a change of basis.

Note the differences between (4.28) for §,Scry and (4.22) for 0pSgm. If the boundary U and its inverse induced
metric y*” are held fixed (6" = 0 and §v*¥ = 0), then §,Scry and d9Sgm cancel. However, if v* is allowed to
vary (6v*” #0), then 64Seuy and 65Sgmr do not cancel.

D. The Weiss variation

We now discuss the variation induced by the displacement of the boundary 0U, which we denote by é,Samy .
Earlier, it was remarked after equation (4.3) that Sgry may be interpreted as the first variation of area (3.28) for
the choices da = 1 and §b* = 0. In particular, compare the following expressions (equations (3.28) and (4.3)):

5A:/5aKdZ—|— 5bidai:/K\/|’y|d3y
Q oQ Q

1
SGHY:_/a Key/|y|dy
U

KR

(4.29)

where we have set!! §a = 1 and db° = 0 in the expression for A4 (we use Q to denote general 3d surfaces in M). The
generalized second variation of area formula (3.31) describes the change in the first variation of area for a hypersurface
under an arbitrary displacement of the hypersurface. Using the generalized second variation of area formula (3.31),
we obtain the following result for the variation of §A (as given in (4.29)) under a displacement!? §x#:

5.(54) = 6, / K Vil dy
Q

(4.30)
- %/QW ny PR+ e(K? = Kap K°7) = R] \/Ivld3y+s/8QK5bim/|ald22

11 'We may also get rid of the boundary integral over 9Q by requiring that Q be boundaryless. For instance, if Q = 9U, then this is indeed
the case by the boundary of a boundary principle: 99 = 0.
12 The displacement dz* corresponds to the second variation (3.30) in the variation of area formulas.
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where 0b" = EL dz*, r* is the unit normal vector to 8Q, and \/Wd% is the volume element for 0Q. If Q has no
boundary, then the boundary integral vanishes; this is indeed the case for the surfaces ¥y and ¥ that form 0U. We
may make use of the general expression (4.30) to obtain the variation of the GHY term under displacements of the
boundary 0U:

Kk 0.ScHy = 04 / Ke /|y d®y = = / oxt ”u[ R+e(K? - Kop K°P) — RV | dy (4.31)

The total variation of the GHY boundary term takes the following form:
0Scuy = 6¢Scmy + 0:Sany

5 y 5
=5 [ @K =K o) VAT + o [t PR e = Koy K°7) = R] VRl %

(4.32)

We now combine the expression for §Sg gy (4.32) with 65Sgy in (4.22) to obtain the full boundary term for §Sgg,
which we denote 65Sar:™

00SGR := 00SEH + 0SaHY

€ o € .
= % (5'}/ B Kop —20K + R ozt n#) VI By + %/B (20K — K vy YM) V/|7] d3y
4.33
+% 536“71# PR +e(K? — Kop K*°) — R] /7| &Py (4.33)
€
=5 o (Um — K)o + 628 0, OR + (K7 — Ko K°) ) VT

The full variation of the gravitational action takes the form:

1 v € v
0Scr = —/ G 09" v/ g d*z + %/au (K — K ) Y") vV 1 d3y

+ % 53:“ nu PR+ e(K? — Kog K%)) /7] &y

(4.34)

At this point, we note that if the boundary 9U is held fixed, then the projection tensor/induced metric ¥*¥ must be
held fixed in order to obtain a functional derivative of Sgr[g"”] (see [12]); this suggests that the induced metric for
hypersurfaces in a foliation of spacetime forms the degrees of freedom for the gravitational field.

To convert the above result (4.34) to the Weiss form, we define the total change in v*” and provide a first-order
expression:

Ay =g =" ou

%5,}/#1/_'_566&0&7#1/ (435)

where dx* is the displacement for the boundary. To simplify calculations, we decompose the displacement dz* in the
following manner:**

Szt = ant + b*
a:=¢edzxtn, (4.36)
bt = Ak bz = (68 —en ny)dx”
The Lie derivative of the induced metric with respect to dz* takes the following form:

£szayt’ = 02V oy — 4 Voot — 41 Vi 0x”

4.37
=at "+ Ly 4+ (n! v Vaa + n” 41V a) ( )

13 Recall that we use the notation §5S to mean the boundary terms that appear in the variation §S.
14 Again, we remind the reader that the displacement dz* corresponds to the second variation (3.30) in the variation of area formulas.
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We combine (4.35) and (4.37) to obtain the expression:

Y = Ay — Loyt

4.38
=AY —aL Y — £y — (nf y*Vaa + n” A1V aa) ( )

Contracting with K, — K 7y,,, we obtain:

(K,uu -K ”y#,,)&y“" = (K,uu -K ”y#,,)(A'y‘“j —aL, Y — £5”Y'W)
= (K — K yu) (DA™ +2a KM") = (Kij — K i) £37" (4.39)
= (Kuv = K ) A" +2a (Kij K = K?) = (Kij — K 7i) £37"
where we have used (K, — K WW)?"L” = 0 in the first line (since both K, and +,, are both tangent to 0U), and
we have used the expression K*” = ——*ya ”£n*y°‘5 in the second line. A change of basis has been performed in the
third line, and the last term is justified by the gauge we have chosen, in which the boundary is a surface of a constant

value of some coordinate r; this allows us to rewrite the Lie derivative in terms of the coordinate basis 3°.
The boundary term becomes:

€ - .
0oScrR = 7= - <(K;w — K 3u) Ay + 2¢ 02 ny, (Kij K9 — K?) — (Kij — K i) £577

2Kk
+ 62" n, (PR + e(K? — K Kiﬂ'))) Vil dy (4.40)
€ . -
- % ((KHV - K’Y;UJ)A’YHV - (Kl] - K’Yij)"gl;’yw + oxt nu(SR - €(K2 - Kij KU))) V |7| d3y
We may use the formula'® £;7% = —D'b — DIb’ with the divergence theorem to rewrite the term containing £57%

(this result will be used later on):
—/E((K — K ;)£ ) Vil dPy = 2/ ( (K —K%-j)Dil;j> Vil dy
:_2/ (Di(Kij —K%j)éj) \/|7|d3y+2/ ((K — K 7ij) ) Vo] d*z
> ox

(4.41)

where ' is a vector tangent to a hypersurface 3 that forms the unit normal to a 2-surface 9%, and +/|o| d?z is the
volume element for 0%.. Since the surfaces in JU have no boundary, the second term vanishes, so that:

558 = i - <(KW — K 7)) Ay = 2DU(Kij — K i) U + 62t n, PR — e(K? — Kij K')) > Vv @y

(4.42)
At this point, we note that if v*¥ form the degrees of freedom for the gravitational field, then we may define the
quantity P,, to be its conjugate momentum:

Py, = % P V1 (4.43)
where:

Puv =K — Ky (4.44)
It is straightforward to invert these formulas to obtain the following expression for K, :

1

K =2k (PW + 5 W 7 Pa3> (4.45)

15 Note that the covariant derivative D? := 4% D; on 9U satisfies metric compatibility: DF~i = 0.
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Finally, we write out the full variation of the gravitational action in Weiss form:

1 g
50n =5 [ G Vil + 5 [ (o 9 4 [, (R (0 = K3y K9) =2 D) 0 ) VBT
U ou
) (4.46)
where we reintroduce the definition b* = 4% §z”. Upon comparing the Weiss form of the variation (4.46) with that for

a generic classical field theory (2.30), we may identify the canonical energy-momentum “tensor” for the gravitational
field (valid only when evaluated at OU):

a0, — ([(3R — e(K? — K;j K'9)) n, — 2 Dop®,] n* \/|”y|) lou (4.47)

We recognize the terms appearing in .##, as the geometrical parts of the momentum and Hamiltonian constraints:
Dozpau - Da (Kau - 73 K) = K’yg THV nU (4‘48)

—e(®*R—e(K? — K;j K)) = 2k T, n* n” (4.49)

where T}, is the energy-momentum tensor (the source term for the Einstein field equations), which vanishes in the
absence of matter. If the above constraints are satisfied (as they should for solutions of the vacuum Einstein field
equations), what we would regard as the canonical energy-momentum tensor for the gravitational field vanishes. In
the literature, this is often attributed to the reparameterization invariance of GR;'® however, the canonical energy-
momentum tensor vanishes identically for a reparameterization-invariant theory [26], while the constraints (4.48) and
(4.49) do not. This is because the gravitational action Sgg is not written in a reparameterization-invariant form;
one may easily verify that the Lagrangian density does not transform as a reparameterization-invariant Lagrangian
density. Furthermore, the presence of the Hamiltonian and momentum constraints suggest that the variables we have
chosen to describe the gravitational field (the 10 components of the metric tensor g,,) are greater in number than
the physical degrees of freedom for the gravitational field; it is well-known that there are only two physical degrees of
freedom.!” If one can identify the physical degrees of freedom (which we define as those that identically satisfy the
constraints (4.48) and (4.49)), the gravitational action written in terms of the physical degrees of freedom will have a
canonical energy momentum tensor that vanishes identically for pure gravity. Thus, if the physical degrees of freedom
for the gravitational field are identified,'® one may expect the resulting action to be reparameterization invariant.

We now attempt to construct a Hamilton-Jacobi formulation for gravity. We begin by simplifying §Sgr (4.46); if
we choose the variation dz# to be proportional to the unit normal vector n*:

ozt =nt At (y), (4.50)

we may interpret A7(y) as the amount (measured in proper time) by which the boundary JU is displaced in the
normal direction. Upon performing a change of basis to write P, Ay*” = P;; Ay", the variation (4.46) simplifies to:

1 g
0Sgr = oy /U G 69"/ |g| d*x + /au (Hj AV — s AT) d3y (4.51)
where we make use of y,3n* = 0, and we define the “gauge fixed” Hamiltonian density:
ij 1 ij
Hap(Pigy7) = = {3R—5(K2—KinJ)}\/|fy| (4.52)

where K;; depends on P;; via formula (4.45). This coincides with the ADM Hamiltonian'® in Gaussian normal

coordinates, where the spacetime metric g,, and its inverse g"” satisfies the following on a surface ¥; of constant
0

T =t

gooln, =€ dVs, =¢
goilz, =0 9%z, =0 (4.53)

gijls, = vij 97|z, ="

16 See, for instance, [28], which contains a detailed discussion of reparameterization invariance in GR. A more general discussion of
reparameterization-invariance may be found in [26]; one should keep in mind the distinction between reparameterization invariance
and the invariance of the action under coordinate transformations. The difference is that under coordinate transformations, tensors
pick up transformation matrices while reparameterizations do not generate transformation matrices; reparameterizations only affect the
functional form of the fields, so that their effects only show up in the derivatives of the field.

17 To see that there are only two physical degrees of freedom, note that the constraints (4.48) and (4.49) consist of four independent
equations, which may in principle be used to fix four components of the metric tensor. Specifying the spacetime coordinates (there are
four in number) fixes another four components of the metric tensor (the lapse function and shift vector), leaving two components.

18 The identification of the physical degrees of freedom for the gravitational field is a highly nontrivial problem, and to our knowledge,
remains an open problem.

19 To obtain the full ADM Hamiltonian, we choose the variation to take the form dz# = (ant + BH*)At.
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with Y; having no boundary.

We now attempt to obtain the Hamilton-Jacobi equation for the gravitational field by defining a classical action
S& Ry, m;74Y, 2], where the brackets [] denote functionals over boundary surfaces. The quantities v’ (y1) and
71(y1) are functi(_)l_ns over the_surfaces Y7, and the quantities 75’ (y2) and 72(y2) are functions over the surfaces Xp.
The quantities vy’ (y1) and 73 (y2) are the inverse induced metrics on the respective boundary surfaces ¥; and X,
and the values of 71 and 7> correspond to the time coordinate in Gaussian normal coordinates constructed at the
boundary surfaces ¥; and Xp. If 71 is held fixed, the differential of S& p[v;’, Tl;wgl, T2] takes the following form:

596 — 6533 P 0S5&nR 05&nR
R S R 27 o7
The value of the classical action S¢p coincides with the usual action Sggr for solutions of the vacuum Einstein field
equations G, = 0. Furthermore, the Hamiltonian constraint (4.49) for such solutions suggests that J¢;; = 0. When
comparing the differential (4.54) with the variation (4.51), we obtain the following expressions:

Sv8t + 672 (4.54)

6SéR
67§l Pkl|2p (4.55)
0S¢ ij c i i
57?21% = Ay (Pij|EF7 ’Yzj) = Ay (5SGR/572‘7a ”Yé]) =0 (4.56)

where we have made a substitution in (4.56) using (4.55). It is common to identify (4.56) as the Hamilton-Jacobi
equation for (vacuum) GR, as is often done in the literature [21, 23, 29|, and it may be shown that (4.56) define the
dynamics for (vacuum) GR [22]. We note that equations (4.56) do not form the Hamilton-Jacobi equation for GR in
the same sense as the Hamilton-Jacobi equation in mechanics; J7 ¢ is a Hamiltonian density, not a Hamiltonian, so
(4.56) should be viewed as a set of local constraints. The Hamilton-Jacobi equation for GR is the following:

Hyy (0861077 8] = [ Aoy (885595, 4F) Py =0 (4.57)

XF

which forms a functional differential equation for S&p.

V. VARIATION OF THE GRAVITATIONAL ACTION: SPACETIMES WITH SPATIAL BOUNDARY
A. Cylindrical boundaries and the action

We now consider a compact region of spacetime W with a boundary OW that has the cylindrical topology indicated
in figure 2. In particular, we choose the boundary OW so that the spacelike portions ¥; and Xz have the topology of
a solid 3-sphere,?? and the timelike portion B has the topology of the manifold R x S2, where R is a compact subset
of R.2! For the remainder of this paper, we shall (unless otherwise stated) require that the spacetime boundary has
such a topology, and the the surfaces X;, ¥ and B maintain their respective signatures. We shall also require that
the unit normal vectors be outward pointing, and use the notation established in figure 2; n/ is the unit normal to
Y, njy is the unit normal to B, and nf. is the unit normal to Xp. We shall also require that the variations are such
that the boundary and the metric g, is held fixed at the 2-surfaces S; and Sr, and that the inner products of the
unit normal vectors on either side of the 2-surfaces S; and Sy are held fixed; in particular, we hold fixed the following
quantities:

<n17nB>|SI = gMV|SI (nl;)lsl (n]lé”SI
(np,nB)|sy = guvlsy (Mp)lsy (nB)|sy

It is convenient to introduce some additional notation for quantities defined on the different portions of the boundary
OW. For the induced metric v;; of the boundary OW, we write:

(5.1)

hijj = 'YileI
" :=7"|B (5:2)

. A4
hF =7 |EF

20 Tn particular, a solid 3-sphere is a subset of R3 defined by the condition x2 4 y? + 22 < C, where C is a constant.
21 Tt must be mentioned that we must choose the region W of a dimensional spacetime so that admits a boundary with such a topology.
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..................
.-

S, > P, L
D P

FIG. 2. An illustration of a cylindrical boundary for a spacetime region W, with boundary OW = ¥; UB U Xr. The vertical
direction is timelike, so that X; and X F are spacelike surfaces of codimension one, and B is a timelike surface of codimension
one. The surfaces S; and Sg are two dimensional surfaces (assumed to have exclusively spacelike tangent vectors) that form
boundaries between X7, B and Xr. The unit normal vectors (shown in red) are defined to be outward pointing; n; = [nf] is
the unit normal to X;, ng = [nf] is the unit normal to B, and nr = [n%] is the unit normal to Xr.

where lowercase Latin indices ¢, j, ... from the middle of the alphabet correspond to coordinates on ¥; and ¥, and
lowercase Latin indices a,b, ... from the beginning of the alphabet correspond to coordinates on B. An underline
will be used to indicate quantities defined on the spatial boundary B; for instance, K;; and K denote the respective
extrinsic curvature and mean curvature for the spatial boundary surface B.

The gravitational action over the region W is given by:

Sarlg"] == Spulg"’] + Sy + Sc (5.3)

where Spp[g"”] is the Einstein-Hilbert action:

Seala™)i= 5 [ RVIdld's (5.4)

As before, Sggy is the GHY Boundary term, but it now takes the form:
1 1 1
Somy = — [ KV @y [ KVady- [ K Ve (5.5)
K Jsp Kk JB K Js;

The quantity Sc is the “corner term,” which one must include if the boundary W is nonsmooth [30-34].22 For the
boundary surface in figure 2, the corner term takes the following form:

1 1
Sc = _/ n1v/o| d22+—/ nry/|o| d*z (5.6)
K S K Sr

where:

ny := arcsinh ((n;, nB)|s,)

5.7
nr := arcsinh ({(ng, nB)|s,) o

with (nr,ng)|s, and (np,nB)|s, being defined by (5.1). Note that if the unit normal vectors are orthogonal, the
corner term vanishes.

22 Our construction assumes the 2-surfaces Sy, S, and the 3-surfaces X7, and L are all spacelike (in the sense that they have spacelike
tangent vectors), and that the surface B is timelike (in the sense that it has a Lorentzian signature for the induced metric). The
boundary terms for the more general case, where the boundaries are nonsmooth and contain null surfaces, may be found in [35-39].
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B. The Weiss variation

We now write down the Weiss variation of the action (5.3). The earlier result (4.46) for the variation of the
gravitational action may be carried over if we demand that the variations do not reach the 2-surfaces S; and Sp,
where the boundary OW becomes nonsmooth. In particular, we require that dz'|s, = 0, dz*|s, = 0, dguvls, = 0
and 0guvls, = 0. We also require that (nr,ng)|s, and (np,nB)|s, are held fixed under the variations so that the
variation of the corner term vanishes: 0S¢ = 0. Under these conditions, the variation of the gravitational action has
the same form as (4.46):

1 € .
0ScrB = %/ G 09" \/|g| d*x + %/a pij AV /|y Py
W W

(5.8)
£ ((3R — 5(K2 - K K”)) n, —2 Dapo‘ﬁ ’7H5>6$‘u\/ |v] d3y
2K OW X
We may simplify the above expression by choosing a boundary displacement dx* of the following form:
x|y, = n* Ari(y) for y € ¥
ozt|g = n* Ar(y) fory e B (5.9)
dztls, = n* Atp(y) forye Xp
where dz* is assumed to be continuous, and vanishes at the 2-surfaces Sy and Sg:
5$H|SI =0
5.10
5$#|SF =0 ( )

The variation of the action may then be written as (I and F' are labels—they are not indices to be summed over):

Scnn = o [ GuogVidate+ [ (Phang - st dn )y

Y N (5.11)

+ / (Bab Ag® — A As> d*y + / (P£ AP — A ATF) dy
B S

where we have defined the momentum densities (recall that an underline denotes quantities defined on the boundary

B):
1
Pjj = =5 (Kij = K hij) V[l
1
Loy = 5 (Bap — K gap) Vgl (5.12)

1
Pl = — 5, (K — K hi})V/Ihe

and the Hamiltonian densities:

ot
M= =5 SR+ (K? — Ky K9 [V/|hi]
K
L
M == PR~ (K — K, K*)|V/]g] (5.13)
) - E
= o 3R+(K2—Kij K[/ |hp|

where 77 is defined on X; and J#% is defined on Y.

C. Time evolution and the Brown-York quasilocal energy

We conclude this paper with a brief discussion of time evolution, and a derivation of the Brown-York quasilocal
energy. One might imagine time evolution as a displacement of the boundary ¥ in the future time direction, with
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an accompanying stretch of the boundary B. To see this, consider the classical action S& RyB[[hZ}j :q0; hg]] which has
the value of the action functional Sqr,B[g""] evaluated on solutions of the vacuum Einstein field equations G, = 0.
The Ricci scalar R for these solutions vanishes, so that the action takes the following form:

ij. ab.pij 1 1 1
Sernlbfiainf) = [ ki@ [ K- [ rVldy (5.14)
Kk Jsp kJB K Jsy

where the extrinsic curvatures for the boundary K and K are obtained from vacuum solutions of the Einstein field
equations consistent with boundary conditions given by the induced boundary metrics h7, g and h%. We note that
1 =0, 58 =0, and 5% = 0 on vacuum solutions of the Einstein field equations; from equation (5.11), it follows
that the variation of the classical action S¢p g satisfies:

5S&pp = /E PLARY d*y + /B P, Ag® dy + /E P ALY dPy (5.15)
I F

We therefore find that the classical action S¢p g is independent of displacements dz* of the boundary in the normal
direction (under the condition (5.10)). A stretch in the boundary B, on the other hand, does affect the value of the
classical action S&p g; a stretching of the boundary B corresponds to an increase in its 3-volume, which will affect
the integral over B in (5.15).

To obtain the Brown-York quasilocal energy, we perform a 3 + 1 decomposition of the boundary metric gqp:

ds? = qqp dy® dyb = —(22 +oaB EA EB) dt’> + oap EA dzB dt + oap dz? d2P (5.16)

where o4p is the induced metric on constant ¢ hypersurfaces of B. The volume element may be written as
ay/|det(cap)|; we may characterize the stretching of the boundary with a change in the lapse function a. The
inverse metric components ¢*® may be written as:

¢ = —a?
¢t =a?p" (5.17)
g*F = —a72 A BB 4 oAP

In mechanics, the Hamiltonian in Hamilton-Jacobi theory is the derivative of the action with respect to a change in
the time parameter ¢. In the classical action S¢p g, the lapse function a characterizes the stretch in the boundary,
so it plays the role of a time parameter. The analogue to the Hamiltonian is the following functional derivative:

a 0SgrB 1 0SGR,B 0SGRB o4 . 0SGRB ,A B
- ( 5q00 7T 5q0A B=+ 3qAB B~ B

Vgl e Ta2/]ql
1
_2Q2\/m(

We define a unit vector [A?] := (1/a, —34/a) that is normal to the constant ¢ surfaces, and tangent to the boundary
B. Equation (5.18) may then be rewritten:

(5.18)

Poo — 2Ppaf™ + Papp? EB)

a 0SarB
Vi oa

We may integrate this over a constant ¢ surface on B to obtain the following expression for the energy [3]:

1
E:=- / b (K, — K qap) /| det(oap)| d?z (5.20)
S¢

3=

1
=~ Py = — 1" 1 (K — K qun) (5.19)

This expression is equivalent to the Brown-York quasilocal energy, up to a subtraction term. One may, following
[3], obtain similar integral expressions for a momentum-like and a stress-like quantity from functional derivatives
with respect to 54 and o4p5. Note that, unlike the original result in [3] our expression (5.20) is independent of the
foliation in the bulk manifold W; we do not require that the time coordinate in the bulk be the same as the time
coordinate ¢ on the boundary B, and while the result in [3] requires the condition that the foliation in the bulk consist
of hypersurfaces that are orthogonal to the boundary B, our expression (5.20) for quasilocal energy does not require
such a condition.
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Appendix A: The Gauss, Codazzi and Ricci Equations in the bulk coordinate basis

In this appendix, we establish some formulas (the Gauss, Codazzi and Ricci equations) relating the curvature of
a hypersurface Xg to the curvature of the bulk manifold I (assumed to be Lorentzian). While these equations are
well-known, the derivations we have encountered in the physics literature were obtained with the 341 formalism in
mind; in particular, they assume a spacelike surface embedded in a Lorentzian spacetime. Our formulas apply to both
spacelike and timelike surfaces; the distinction is governed by the quantity ¢ = n#n, = £1. We assume the existence
of a foliation in U; all foliation-dependent quantities are defined with respect to this foliation. The definitions in
section III B will be used here.

1. Some preliminary results

We begin by deriving a few results that will be useful for us later. Given a vector field V' tangent to the
hypersurfaces ¥g, i.e. one that satisfies V*n, = 0 for the unit normal vector field n®, we infer that V,(V*nq) = 0.
By the product rule, we may obtain the following:

N VuVe+ ViV, ne =0 = n,V,V*=-VV,n, (A1)

If we project the free index of the above onto the hypersurface, we obtain:

YoV, Ve = =ViEV in,

A2
- VUK, (A2)
Next, work out the expression for the covariant derivative of the induced metric:
va v — va v — €& Va Ny Ny
FY,U‘ gll« ( 1% ) (A3)

= —en, Van, —en, Van,

From equation (3.15), we have V,n, = K,,, + € n, a,, so that we obtain the following expressions for the covariant
derivatives of the induced metric and projection tensor:

VaYuwr = —eny Koy —nyna ay —eny, Koy —ny ng ay (A1)

Vaoyh = —en, KK —nyng a* —en” Ko — 0¥ ng ay.

If we project the derivative index onto the hypersurface, we obtain the following formulas for the covariant derivative
of the projection tensor:

YgVaTw = —eny, Kg, —eny, Kg, (A5)
VgVarl = —eny Ky —en' Kg,.

Finally, we derive a useful expression for V,n” V,n*. Using the expression V,n, = K, + € n, a,, we may write
the following:

Vun' Voot = (K,” +eny, a”) (KM +en, at)

v v v 2 v (AG)
=K,"K,/) +en,a” K, +¢K," n, a" +¢"ny a” n, a"
Since n*a, =nya* = 0,28 and n,K,” =0, the last three terms vanish, and we obtain the result:
Vun' Vot =K,” K" (A7)

23 One may show this using the formula for acceleration (3.17) and the requirement that n#* have unit norm.
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2. Deriving the Gauss equation

We are now in a position to derive the Gauss equation, which relates the intrinsic (Riemann) and extrinsic curvature
of a hypersurface ¥g to the curvature of the bulk manifold &/. For some vector V¢ field tangent to the hypersurfaces
Y.g, the Riemann tensor for ¥ g satisfies the commutator relation:

D,D,V*~D,D,V*=R"; VP (A8)

Buv

We begin by analyzing the first term in the commutator:

PV o (VI VaV )

DuD,V? =3y 7
= Y2V VBV + 42V a AV 8V + 12V V0 V sV
= YV EV VA + AV VeV + 4 Vo VsV
= VYNV GV VA + 5V et VYT + 18V a VsV

Using equation (A5), we have:

DD, VP = —e [ (ng K +n” K.p)Ve VA —eyA{(n: K +n* K )VaV7
+ VAV ViV
= -2 Kpn'V,V* —ev8% Kﬁ‘ n VgV’ + vﬁwfvaaVﬂV’\
= —& K 75 n VoV — e KAy nVsV7™) + /57070 Va VsV

(A10)

and using equation (A2) in the second term on the last line, we have the result:
DyD, VP = =€ K, 70V VP + e K Ky VT + (7570 Va Vs V) (A11)
Finally, we plug this result back into the commutator to obtain the result:
[Dps DV = e(Kfi Kor = K Kyr)VT 49409/ [V, V]V?) (A12)
Upon comparison of the above with equation (A8) and the expression[V,,V,|]V* = R?;,, V7, we obtain:
R?,,, V° =eK Ky — K K )V +8(V0v) R agV7)
= —e(Kf Ko = K[, Kuo)V7 + {030 R a1z V) (A13)
= — (e(BL Kuo — K[, Kuo) + 937573070 R rap) V7

The above expression must hold for any vector field V* tangent to the hypersurfaces ¥ g, which implies the following:

7§’7;'7ﬁ’75 RATOt,@ = Rpauu + E(Kllj KHU - Kﬁ KV(T) (A14)

The formula above is called the Gauss Fquation, which establishes an algebraic relationship between the Riemann
curvature tensor R*, 45 in the bulk manifold U to the respective intrinsic (Riemann) and extrinsic curvature tensors
R? ., and K, for the hypersurface Xg.

v

3. Useful contractions of the Gauss equation

We now discuss some contractions of the Gauss equation that will appear often in this article. First, we contract the
indices p and o of the Gauss equation (A14) to obtain an expression for the hypersurface Ricci tensor R, := R? ,,,:

7?7;’7575 Rka‘r,@ = Rauau + E(K:,T KUM - K KVH) (A15)

where we have used the formula for the mean curvature K = v*”K,,. The left-hand side of the above equation
becomes:

VSVIVEAS R arp = V5v0vE R arp = (05 — e n” ma)v3yh R arp
=278 Rag — en” nav5yl R arg (A16)
= 7375 (Rﬂcﬁ —en’n’ Rcrom’ﬁ)
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It should be noted that n®n° n™ Ryarg = 0 and n?n" nf Rsarp = 0 due to the antisymmetry in the indices o and o,
and the indices 7 and 3. It follows that v Y31 nT Roarp = n°n” R,y7v. Equation (A15) becomes the following:

vﬁ‘wfRag —en’n” Ropry = Ruu +e(KS Koy — K Kyp) (A17)

We now contract the remaining two indices (with the induced metric/projection tensor) to get an expression for
the Ricci scalar. Again, the contraction of the right hand side of (A17) is straightforward, but the contraction of the
left hand side requires some algebra:

V(435 Rap — €17 07 Ropry) = Y 4270 Rap — e n” 07 A" Ropry
=~ Ropg—en?n” (g" —entn”) Ropry
= (g% —en®nP) Rap —en’n” Ry, (A18)
+e2n®n” ntnY Ropru
=R—25n°‘n'8Ra5

where we have used n” n” n* n” Ry, = 0 (which follows from the antisymmetry of the first two and last two indices)
in the third equality. The contracted form of (A17) is:

R—2en*n” Ry, = R+e(K" K, — K?) (A19)

We may obtain an alternate expression by writing R,,, n*n" in terms of the extrinsic curvature. From the commutator
formula for the Riemann tensor, we have the following expression:

R, n*n" =n"(V,V, —V,V,)n°

A2
= nyvovund - n”V,,Vgn" ( O>
Using the Leibniz rule, we may write:
Vo (n:Vl,nZ) = Vgn:V,,nZ + n:VUVl,n: (A21)
V., (n"Ven?) =V,n"V,n® +n"V,Ven

The above allows us to rewrite equation (A20) as:

R,,n*n" =V, (n"V,n?) = V,n"V,n° =V, (n"Ven?) + V,n"Von?
=V,a° - K, K,” -V, (n" K)+ K? (A22)
=K?—- K" K, + V, (a° —n° K)
where we have used the expression a” = n”V,n? for acceleration (3.17), the expression K = V,n# for mean curvature

(3.18), and equation (A7) in the second line. We may plug this back into equation (A19) to obtain the following
expression for the bulk Ricci scalar:

|R=R+e(K2— K" Ku) + 26 Vo (a7 —n” K)| (A23)

4. The Codazzi equation

An alternate way of deriving the Gauss equation in the previous section is to project all the indices of the bulk
curvature tensor onto the hypersurface; in doing so, we obtain a tensorial equation with all indices tangent to the
hypersurface. However, one may choose instead to project some indices of the curvature tensor onto the hypersurface,
and to contract the remaining indices with that of the unit normal vector; this procedure also yields tensor equations
tangent to the hypersurface, this time of lower rank.

In this section, we obtain a differential relationship between the Riemann curvature tensor R’\mg in the bulk
manifold ¢/ and the extrinsic curvature tensor K, for the hypersurface X5 by contracting one index of R, op with
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the unit normal vector and applying the projection operator to the remaining indices. Using the commutator formula
Vi, VoIV = R%3, V? for the bulk Riemann curvature tensor, we may write the following:2*

Ve vhvs R epw n° = 57675 (Vi Ve = Vo, V) n”
= ’YZVZVE (vu(vunﬁ) - VV(VMn“)) (A24)
= 'YTU"YZ'YE (Vu(vuno) - Vy(V#ng))

where we have made use of metric compatibility V,¢"" = 0 to lower the index on the normal vector in the last
equality. We plug in the expression V,n, = K, +€n, a, to obtain the following:

VY6 B epw 1 = 7"7vE75 (VKoo + €0y ag) = Vo (Ko +€nyac))
— WTUVQVE(VMKW +eVuny ae+eny, Vyas — Vo Ky (A25)

—eVun, a, —en, Vyas)
Using 74 = 0 and the formula (3.15) for the extrinsic curvature Ko5 = 7474V uny, we have:
Vb s R ey n® = Do K" — DKo +ea” (Kap — Kpa) (A26)

Where D, is the hypersurface covariant derivative. Making use of the symmetry K, = K,,, last two terms cancel
and we arrive at the Codazzi equation:

’7;75’7[5 Rﬁauu n® = DozK,BT - D,BKozT (A27)

We may sum over the indices o and 7 to obtain the following expression for the left hand side:
7?7575 Rﬁs,uu n = 7;&75 Rns,uu n = 6;:75 Rﬁs,uu n®—e 'YE n' n Rns,uu n®
= 'yg RF.un® —e 'yg Ryep n” n® 0t (A28)
= ’yg R#V n*

where we have used Ry, n* n° = 0 in the last line. The contracted Codazzi equation takes the form (using metric
compatibility D5 = 0 on the second term):

V4 Ry = Do (K™ =75 K) (A29)

5. The Lie derivative of extrinsic curvature: The Ricci equation

We now derive the Ricci equation, which relates the Lie derivative of the extrinsic curvature to the bulk Riemann
curvature tensor. We shall take an indirect approach, and begin by computing the Lie derivative of the extrinsic
curvature with respect to the unit normal vector field. The Lie derivative of the extrinsic curvature is:

LnKuy =n"VoKu + Ko Vun® + Ko Von® (A30)
We begin by computing the last two terms:

Ko, Vun® + Ko Von® = (Van, — e naay) Vun® + Ko K, + € Kyanya®
= (Van, —enqaa,) V,n® + K, o K,° (A31)

+e(Vuna —enyaq) nya®
We make use of n*V,nq = n,V,n* =0 (which follows from n®n, = ¢ = %1) to obtain the following result:

Ko Vun® + Ko Von® = (Van, )(Vun®) + Ko K% + e ny a® Vyng —ny ny, aq a® (A32)

24 Due to the symmetries of the Riemann tensor, we may write this without loss of generality.
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We now turn our attention to the first term in equation (A30), which is the directional derivative of the extrinsic
curvature:

n*VoK,, =n®V, (Vyn, —enua,) = n*VaVpun, —eaya, —enun®Vaa, (A33)
From the definition of the projection tensor, we may write € n,n® = d;; — ;. We use this to expand the last term:

n*VoK =n*VoVyun, —eayua, — 52‘ Vaa, + 73 Vaay
=n*VoVyun, —eaua, — Vya, +7; Vaay
=n*VaVun, —eaua, — V(0 Van,) +75 Vaa, (A34)
=n*VoV,n, —eaya, — (Vun®) (Vany,) —n® V,Van, + Yy Vaay
=n*(VaVy =V Va)n, —eaua, — (Vun®) (Vany,) + 75 Vaay,
At this point, we recognize the first two terms in the last line as the contraction of the Riemann curvature tensor with

two unit normal vectors; it is straightforward to show that n®[V,, V,]n, = naRyﬁa#nﬁ. The directional derivative
of the extrinsic curvature becomes:

n*VoK,, = —Raupy nnf —¢ apay — (Vun®) (Vany) + ’yz‘ Vaa, (A35)
We plug equations (A32) and (A35) into the formula for the Lie Derivative of the extrinsic curvature (A30) to obtain:

LKy = —Raupy nn® — ¢ aua, — (Vun®) (Vany) + Yy Vaay
+ (Van)(Vun®) + Ko K% +eny a® Vyng — ny ny aq a® (A36)
= —Raupv nn? + K K,%—caya, + vff Vaay +eny, a® Vyng
— Ny Ny o a7
We may simplify this further by working out the hypersurface covariant derivative D,a, of the acceleration a,, which

is tangent to the hypersurfaces Xg; in doing so, we will recognize that several terms in the above expression (A36)
combine. Explicitly, we have:

D,a, = Fyﬁ’yf Vaag =7, Vaa, —€ nPn, Y Vaag (A37)
=7, Vaa, —eny *yz‘(nﬁ Vaag)

Since n? ag = 0, we may write V,(n” ag) = 0, and it follows that n” V,as = —ag Von® = —a” V,ng. This allows
us to write:

Dua, =v;Vaa, +eny, *yﬁ(aﬂ Vang)

=97Vaa, +en, (52‘(@'8 Vang) — 2 n, n® n,(a? Vang) (A38)

=73 Vaa, +¢ ny(aﬂ Vung) —n, ny a® n® Vang

= 7ﬁvaa,, +eny a® Vyng —ny ny a® aq
The three terms in the above result are the same as the last three terms in equation (A36). We may rewrite (A36) as:
LK = —Rappy n“n? + KoK, —¢eaua, + Dya, (A39)

We may simplify this formula once more, using the expression a, = —e D, (In(«)), which is straightforward to derive.
Recall that the lapse function is given by a = |¢g"" n,, 11,,|71/ 2 where n,, = V,,¢ is the gradient of the foliation function
¢. We obtain:
Dya, =—-D,D,Ina=—-eD, (of1 Dl,oz)
= _—¢ (of1 D, Do — a2 D, D,,oz)
=—¢ (a”' DyDya — (DyIne) (D, Inw))

=—ca? D,D,a+¢eay,a,

(A40)

This may be rewritten as:

Dya, —ca,a, =—ca ' D,Dya (A41)
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Finally, we plug this back in to equation (A39) to obtain our result:

£nK,uu = _Ra,uﬁu nen® + K,uaKua - % D,uDva (A42)

This formula is called the Ricci equation. Note that the right hand side is tangent to the hypersurface; if we contract
any index with the unit normal vector, the right hand side vanishes.?>

Appendix B: Deriving the variation of area formulas

These formulas and portions of their derivation may be found in [15] and [16-18], but we choose to derive these
formulas in a manner that is less formal than that found in the literature. In particular, we present a derivation of
these formulas that is accessible—if still very complicated—to physicists.

1. The first variation of area formula

In this section, we derive the first variation of area formula [15], which is a formula describing the change in
the “area” of a hypersurface under infinitesimal displacements. We begin by defining the volume form for the bulk
manifold M:

1 _ . 1 _ .
2= 1 Ciin dz"* A N dx'N = N |91 €, i ATt A Ad™ (B1)
where ¢; ;. is the Levi-Civita symbol and ¢;,...iy := \/|g| €, s, is the Levi-Civita pseudotensor. It is not difficult

to show that on a semi-Riemannian manifold,
£vQ=divQ=V,V"Q (B2)

where V# is a vector field, and the interior product i,w of some p-form w and some vector field w is defined by the
expression:

1
(p—1)!

The formula for the Lie derivative (B2) of the volume form £, allows us to write:

TuWw 1= Ut Wy agy AT A A AT (B3)

1.d(5V)

(B4)
We may take this one step further, and demonstrate that the mean curvature also measures the fractional rate of
change for the surface element d¥ of some hypersurface 3. The hypersurface volume element d¥ may be defined as:

1

dz = ZnQ: m |g| n”g‘ual___aNil de’al /\.../\de'aN71

- (B5)

=@ V] €4, iny Y™ A Ady™N

Recall that y* are the coordinates on the hypersurface X, and v := det(7;;). From Cartan’s formula £,w = di,w+i,dw,
one may obtain the expression £,i,w = iy £yw for a p-form w and some vector field u. Using this result, the Lie
derivative of the hypersurface volume element is

£0dS = £(inQ) = in(£nQ) = in(Van® Q) = K i,Q

B
=  £,dY =K dY (B6)

25 To see that Reppgyn® nP is tangent to the hypersurface, not that the symmetries of the Riemann tensor are such that another contraction
of the quantity Rq,z, n® nP with the unit normal vector would cause the resulting expression to vanish. One may therefore infer that
the quantity Rz, n® nf is automatically tangent to the hypersurface.
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This expression may also be obtained explicitly by applying the Lie derivative formula for tensors to the components
of d¥; since £,n* = 0, it is not surprising that £,Q2 and £,,d¥ are both proportional to the mean curvature.

This result in equation (B6) may be used to obtain a formula for the first variation of area, which is the change in
the volume of a hypersurface under an infinitesimal displacement along the flow of some vector field v#. The change
in the volume element under an infinitesimal displacement, which we write as dz# = §A v (where X is a parameter
along the integral curves of v*), is:

0dY = £5,d5 = L5,(1,Q) (B7)

We may decompose the displacement “vector” dx* into a part normal to the hypersurface and a part tangent to the
hypersurface:

oxt = dant 4 Jb*
da :=€dzx%nq = £0X (VNa)|q (B8)
SbH = Ak dz% = A vhu%|q

Since da and db* are only defined on Q, they are functions of points y € Q, so that derivatives of scalars formed
from these quantities in the direction of the unit normal vector must vanish; for instance, n* V,da = 0. From the
properties of the interior product, we note that is, ntsp = 0a i, + i5p, and that i, i,, = 0. Using Cartan’s formula, we
rewrite equation (B7) as:

0dY = disyinS + i5,d(1,2)
=d(0a in in) + isp 1nQ) + da in d(i,Q) + isp d(in Q)
= digy(inQ) + isp d(inQ) + da i d(inQ) (B9)
= Lsp(inQ) + da(in d(inQ) + din (i,))
= L5p(inQ) + 0a( £ (in2))

where we have made use of i, i, = 0 in the third and fourth equality (we have added a zero in the latter). We may
replace i,{) with ¥, and since the vector b is tangent to the hypersurface, we may write it in the coordinate basis
0/0y" on the hypersurface, so that £5,d% = D;0b*dX. The change in the surface element becomes:

8dY = £5,dY = (D;6b' + 6a K)d¥ (B10)

If we are given a hypersurface ¥g, then we may obtain the infinitesimal change of the “area” (by which we mean
the N — 1 dimensional volume of the hypersurface ¥g) by evaluating da, 0b*, K and dX at the hypersurface, and
integrating (B10). If Q C Xg is a region of the hypersurface with boundary dQ, then the variation of area 0 A is given

by:

6A=/ 5d2:/(Da6b“+6a K)ds (B11)
Q Q

Using the divergence theorem, we obtain the first variation of area formula [15]:

5A:/ SaKdx+ [ &b do; (B12)
Q 0Q

where do; is the directed surface element on 9Q, and da and 6b° = (9y'/OxH) b* are defined in terms of the
displacement §x# according to equation (B8). If 7 is the unit normal vector to dQ (with norm e, = rir;), 24 are
the coordinates on 0Q, and o 4 is the induced metric on 9Q, we may rewrite the first variation of area formula in a
more explicit form:

K] %
A = / Sxtn,, K y/det]y;;|dN "ty +/ oz Ab (3—yu) i € \/det|oag|dN 22 (B13)
Q 0Q v

Finally, we note that if ¥g has no boundary and the integral is performed over the whole of g, the boundary integral
over 0X ¢ vanishes.



31

2. The second variation of area formula

We now obtain a formula for the second order change in the volume of the hypersurface due to an infinitesimal
displacement, which is called the second variation of area formula [16-18]. For the sake of generality, we will begin
by considering two independent displacements of the hypersurface, dz* and §Z*; and compute £szu £5,0d%, with d3
being the surface element of the hypersurface. From equation (B10), we may write:

£5:dY = (D;6b" + da K)d%

g (B14)
£53dS = (D;0b' + 0 K)dS

where we employ the decompositions §z* = da n* + §b* and 83" = dan* + 6b*, with definitions as in equation (B8).
Again, we stress that the quantities da, da, 6b* and 8b* are functions of y € Q only. We note that for some scalar
function ¢, the Leibniz rule yields £y (pdY) = (£v ) d + ¢ Ly dX. If (D;6b° + da K) is a scalar function, we may
use the Leibniz rule to write:

Lszn L 5ndS = Lz ((D;0b" + da K)dX)
= (£5z0(D;0b" + 6a K)dX) + (D;6b" 4 6a K) £550 dS
= (£53n (Db + 6a K) + (D;6b" + da K)(D;00 + da K))dx (B15)
= (63"V ,(D;ob" + da K) + D;5b° D;5b
+8a D6V K 4 da D;idb* K + da da K2)d¥

where for a scalar function ¢, £,¢ = n*V @ in the last equality. Expanding further:

Lsin£5ondS = (3an"V (D00 + da K) + 60 D;(D;db* + da K)
+ D;0b" Do) + da DoV K + 6a D;6b' K + da da K?)dx.
= (8a 1"V ,(D;db") 4 da nV ,da K + da §an"V K + 50 D;D;0b’
+ 6V Djda K + 8a 60’ DK + D;8b' D;6b + da DoV’ K (B16)
+6a D;0b" K + Sa da K?)d%
= (6a dan"V K + (00 D;da K + da 6V D; K + da D;00° K)
+ 60/ D;D;8b" + D;ob' D0 + 6@ D;ob' K + da da K?)dx.
where we have eliminated two terms by noting that da and §b* are functions of y € Q only; normal derivatives of
quantities that are purely functions of y € Q vanish. In particular, since da and D;db" are purely functions of y € Q,

we have n*V ,6a = 0 and n*V ,(D;0b") = 0. Three terms in the above expression may be combined into a divergence,
so that:

LsznLspndY = (Ja 6anV K + 50 D;D;ob" + D;6b" D;ob’ + da D;db' K + da da K>

+ D;(8a 6V K))dx (B17)

Next, we note that D;(567 D;0b%) = D;6b7 D;6b* + 607 D;D;5b*, which allows us to combine another two terms into a
divergence:
Losgn £pndS = (8a 6a (n"V K + K?) + 6a D;0b" KD;(5b D;0b") + D;(da 6 K))dS

, o - B1S
— (ba da (£,K + K?) + 6a D;5b' K + D;(56 D;6b' + 6a 6t K))dS (B18)

where we have again made use of the fact that for a scalar ¢, £, = n*V,¢ in the last equality. We now evaluate
£p,K. To do so, we make use of the expression 757} £,7 = —2K" and also the Ricci equation (A42):
EnK = K Loy + 4" £ K
= K vhh Loy™B — v Ry nonf 4+ y* KoKy —¢ a? + " D,a,
= —2K,, K" — g"" Ra.p nnf +entn? Rausy n%nf + K oK' —¢ a’ + D,a"
= —Ku, K" — Ragn®n® —e a® + Dpa”

(B19)
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where a* := n* V,n" is the acceleration and a? := y* a, a,. In the second line, we made use of K, YEE = Kag.
Plugging the above result back into equation (B18), we obtain:

Lspu £ spnd = <5a 6a (K? — Ky K" — Ropn®n® — e a® + D,a”)
(B20)
+ D;(807 D;iob' + da 60’ K) + da D;0b° K) s

We integrate the above formula over a region of the hypersurface Q C X g with boundary dQ to obtain the generalized
second variation of area formula:

55iu6§muA = / £§ju £51ud2
Q
- / <5a da (K* — K,y K" — Ragn®n” — £ a®> + D,a") (B21)
Q
+ D; (6 Didb' + 8a 6V K) + da D;ob K) s

From the contracted Gauss equation (A19), one may obtain:

Ry, n'n” = g (R—R—¢ (K" K,, — K?)) (B22)

where R is the Ricci scalar for the hypersurface Yg. Using the above, one may obtain the general second variation of
area formula:

8571 05un A = / <5a sae((1/2)(R+e(K? — K,y K") — R) — a®> + ¢ D,,a")
Q (B23)
+ D;(8b7 D;iob' + a6V’ K) + da D;0b° K) .

This formula is foliation dependent due to the presence of the acceleration a,. In the immediate vicinity of Q, we
may construct Gaussian normal coordinates, in which the lapse function « is set to unity, so that by virtue of (3.17),
the acceleration a, = —e D, « = 0. If our original foliation reduces to that of Gaussian normal coordinates at Q,
then we may set a,, = 0, so that:

S5u05pn A = / (6a dae(1/2) (R+e(K? — K, K"™) — R) + D; (607 Db’ + a6’ K)
Q

(B24)
+ da D;6b" K) s
Finally, upon setting 6Z* = dx*, we obtain the second variation of area formula:
52A = / ((5a)2 e(1/2) (R+e(K? — K K*) — R) + D; (b D;i6b* + 6a 6V K)
Q (B25)

+ 8a D;6b° K> )

We conclude this appendix by briefly discussing an application of the second variation of area formula in cosmology.
If we set 0z = §fjAt, the second variation of area formula may be interpreted as a measure of the acceleration or
deceleration for the expansion of the universe. One may also use the integrand of (B25) as a local measure of whether
the expansion of space is accelerating or decelerating. This may be particularly useful in characterizing the inflationary
epoch, since the universe must go through a period of accelerating expansion followed by a period of decelerating
expansion before the end of inflation. Since the universe is currently in a period of accelerating expansion, a period
of rapid inflation requires that the volume of the universe must have at least three inflection points, which may be
characterized by the points in time where the second variation of area vanishes.
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